Какой двигатель из 4А выбрать?

Архив GT форума
Drom.ru - японские автомобили
Продажа авто | Каталог | Отзывы | Вопросы и ответы

Объединенный - Выбор и приобретение - Общие вопросы - Гараж - Страхование - Музыка в авто - Правовой - GT
Toyota - Nissan - Mitsubishi - Honda - Mazda - Subaru - Suzuki - Isuzu - Daihatsu - Грузовики и спецтехника - Барахолка (продам) - Барахолка (куплю)

Перейти на новый GT форум

 Список форумов  |  Архив GT форума  |  Поиск  Страницы:  1  2 
 Какой двигатель из 4А выбрать?
Автор: Vitёk (---.primorye.ru)
Дата:   давно

Какой двигатель из 4А выбрать? А конкретнее: из какого из них можно выжать больше сил и сколько при этом понадобится средств???
 
 Re: Какой двигатель из 4А выбрать?
Автор: Evgene [Нижний Новгород] (---.raid.ru)
Дата:   давно

Однозначно, 4A-GZE, похуже 4A-GE blacktop, ещё похуже он же, но silvertop.

С уважением, Evgene
 
 Re: Какой двигатель из 4А выбрать?
Автор: ROULANT (---.primorye.ru)
Дата:   давно

Кнечно 4A-GZE . Чарджер это вещ.
 
 Re: Какой двигатель из 4А выбрать?
Автор: Teem (---.dialup.irw.ru)
Дата:   давно

Даже нечего и добавить,потому,как чарджер действительно-ВЕСЧ...:)))
 
 Re: Какой двигатель из 4А выбрать?
Автор: rollaz  (---.vvsu.ru)
Дата:   давно

4A-GE BLACK TOP отдназначно!
 
 Re: Какой двигатель из 4А выбрать?
Автор: Nebulus [Нижневартовск] (80.237.66.---)
Дата:   давно

The Toyota 4AGE Engine
Phil Bradshaw

Introduction

The aim of this article is to explain the variations between the different engine generations to assist you in selecting the best one for your application, and provide some advice on conversion to RWD.



The 4AGE is arguably the best option available for installation in a small kit car – it is compact, powerful, reliable, plentiful and cheap. It is also easier and cheaper to convert to RWD than engines such as the 3SGE. The only real limitation is the standard upper horsepower limit of around 165 for factory engines, although 240 is achievable in Formula Atlantic trim, if your pockets are sufficiently well lined.



The 4AGE engine was designed from the outset to be the performance engine for the FWD Corolla/Sprinter range (AE82, AE92, AE101 and AE111 models), which have been its main home. It was also fitted to the first generation (AW11) MR2, RWD (AE86) Corollas (GT, Levin and Trueno, depending on the market) and the odd RWD (AA63) Celica. In simple terms the engine has been upgraded every 4 years, although some changes have occurred at the 2 year point, generally keeping in step with model changes and facelifts to the Corolla.



Given that it was introduced in May 1983 and that (I believe) production ceased in 1999, it is not surprising that there are a variety of engines around: five naturally aspirated versions, and three supercharged ones. Sadly there is no such thing as factory turbocharged versions or supercharged 20 valve models, although the good news is you can easily build one pretty much from factory parts.



The 4AGE itself displaces 1587cc and is in a belt driven 16 valve twin cam configuration, running multi-point fuel injection. No factory engines were produced with carburettors. All engines were produced in transverse configuration with a transaxle, with the exception of the early (1983-87) RWD units fitted to some Corolla GTs, Levins, Truenos and Celicas. These engines are becoming increasingly rare but remain the easiest option for RWD installation, despite the fact that they produce less horsepower than later models and are all getting pretty tired by now. The saving grace is that all later generations of the engine will literally bolt up to a RWD gearbox, opening up the availability of a wide range of power outputs.



The downside comes from the fact that the newer generation engines are optimised for transverse configuration only and in most cases require varying degrees of modification to fit into a RWD body shell. Bolting a FWD 4AGE to a RWD gearbox and mounting the unit in a car is the easy part - the difficulty lies in getting the intake systems, radiator plumbing and (in some cases) distributors to fit.



I will now describe in brief terms the features of each generation of engine; full details of the variations are included in a table at the end for easier reference. I will also describe conversion of later engines to RWD. The methods I propose are what I consider to be the easiest, cheapest and most effective, but are by no means the only way to achieve the end result. Finally I will describe some of the more common modifications that are possible. On with the show.



First Generation 4AGE (83.5-87.5)
The first generation 4AGE was introduced in May 1983 and remained in production until May 1987. Engines can be roughly aged by the year printed on the spark plug leads – provided they are original. The engine is externally identified by silver cam covers with black and blue lettering, hence they are often referred to as 'blue and black tops'. This generation was produced in transverse form (AW 11 MR2 and AE 82 FWD Corolla) and RWD longitudinal from (AE 86 Corolla GT/Corolla Levin/Sprinter Trueno and AA 63 Celica). Transverse engines have the throttle body at the flywheel end of the inlet manifold while RWD have the inlet at the pulley end.

This generation features the Toyota Variable Intake System (TVIS), which is a set of four butterflies located in the inlet system next to the head. These butterflies remain shut below approximately 4500 RPM, effectively limiting airflow to one valve per cylinder, increasing the air speed and thus improving mid range torque. They are opened above this speed by the ECU via a small plastic vacuum tank and solenoid triggered actuator located under the inlet manifold. The feel is similar to a second throat opening on a carburettor. These engines develop in the vicinity of 88 kW in transverse configuration, but around 95 in some RWD models. I am not sure if this applies to all RWD models, or only those that do not run a factory exhaust sensor (such as the NZ new leaded petrol versions). RWD versions are all MAP sensored; some Japanese sourced transverse engines may be air flow meter equipped.
These engines have a weaker block and crank than later versions, and suffered from the crank pulley bolt coming loose, allowing the pulley to damage the crank and key way. Later model engines have a separate bolt and washer, whilst these first generation engines have an integral unit.

Second Generation 4AGE (87.5-89.5)
The second generation engines were released in May 1987 and are identified by silver cam covers with red and black writing, hence ‘red and black top’. Effectively these engines retained the previous head and TVIS, but employed an all new, stronger block (identified by seven vertical ribs as opposed to three on the 1st generation engines), heavier duty crank and conrods. These engines remained on the market until May 1989 and have similar performance to the first generation transverse models, but are more robust. These engines were only produced in FWD, hence all throttle bodies are located at the flywheel end of the engine.

A supercharged model (4AGZE) was also released. This engine has unpainted cam covers. The engine fitted to MR2s has the supercharger outlet to the intercooler facing the flywheel end of the engine block and a normal distributor. The model fitted to the FWD Trueno/Levin has the intercooler plumbing facing upwards (the intercooler mounts on top of the cam covers) and has a crank angle sensor fitted in place of the distributor. This engine is fitted with twin coil packs instead of a conventional distributor arrangement. Power output is 107 kW for both supercharged configurations.

All 2nd generation engines are equipped with an air flow meter and were fitted to AE 92 Corolla/Levin/Truenos and face-lifted AW 11 MR2s.

Third Generation 4AGE (89.5-91.6)
The next generation engines were introduced in May 1989 and remained in production until June 1991. These engines effectively retained the heavier duty block but added a new head with smaller intake ports, hence the TVIS was discontinued. Some engines have silver cam covers with red lettering only (and so are called red tops), while others continued with black and red lettering. The easiest way to identify these engines is by the ribbing on the top surface of the intake manifold (earlier models have smooth tops) and an external oil drain from the head to the sump, located on the inlet side behind #4 inlet port. The sump is slightly different to earlier models.

These engines all have oil cooled pistons and the ignition leads run underneath a cover between the cam covers. Power is increased to 100 kW and all engines are MAP sensored. I believe these engines all feature a knock sensor, located near the top of the block on the inlet side between #2 and #3 cylinders. This is the final naturally aspirated 16 valve variant produced.

The 4AGZE has the same additions and utilises the twin coil distributor less ignition system, as it was only available in FWD AE 92 Levins and Truenos. Power increased to 120 kW and the supercharger has a smaller diameter pulley compared to the earlier version.

Fourth Generation 4AGE (91.6-95.5)
The fourth generation, released June 1991, saw the demise of the 16 valve in naturally aspirated form and its replacement with the 20 valve. This engine utilises the same block as the previous generation, however, an all new head is fitted that features three inlet valves per cylinder and variable inlet cam timing. The pistons are different to suit the clearances required around the extra valve. Knock sensing and oil cooled pistons are utilised to cope with the higher compression over the earlier models. The distributor is mounted off the back of the exhaust cam. The engine is fitted with 4 throttle bodies and is air flow meter sensored. This engine was sold new in Japan only, and also has factory tubular headers. Power output is 120 kW but with less torque than the 4AGZE.

Pre facelift engines (91/5-93/5) can be identified by the throttle linkage mechanism, in that an additional horizontal bell crank arm is fitted between where the throttle cable attaches and the vertical link to the throttle bodies themselves. Later engines do not have this link fitted.

The 4AGZE remained as a 16 valve and is virtually identical to the previous model, but produces slightly more power. This was the final 4AGZE produced. Both engines were available in the AE 101 model only.

Fifth Generation (4AGE 95.5-99.5?)
The final generation of 4AGE is available in 20 valve variant only, and was released in May 1995. This engine is distinguished by black cam covers (surprise - 'black top') and features MAP sensored air flow measurement, otherwise it looks similar to the previous version. Power output is 123 kW and it is only available in the AE 111 Corolla series. This engine has a different intake air box to the earlier 20 valve and has rubber intake trumpets instead of the plastic ones of its predecessor. The throttle bodies are also slightly larger diameter.



RWD Gearboxes
There are two RWD 5 speed gearboxes that will fit any 4AGE using factory parts, provided you have the right bell housing to mate the gearbox to the engine. These gearboxes are called the K-50 and T-50. There are also 4 speed versions of these gearboxes (called the K-40 and T-40) fitted to other Toyotas, so be careful to ensure you get one with the right number of gears...

T-50 Gearbox
The T-50 gearbox has a separate bell housing, utilises a hydraulic clutch and comprises 4 main alloy castings: bell housing, two diagonally split gear casings and a tail housing. This gearbox is often referred to as the ‘split case’ alloy 5 speed and weighs 29 kg. The ONLY bell housings that will mate a T-50 gearbox to a 4AGE come from a RWD 'A' series engine (3A/4A/4AGE).

The T-50 bell housing has letters cast externally into the top section between the uppermost bell housing to engine block bolt bosses that identify the engine it came from, ie 3A or 4AG etc. 3A and 4A bell housings have the clutch fork on the LHS while 4AG bell housings place it on the RHS.

The T-50 gearbox was fitted to other engines as well, such as 1S and 3T etc. The gearbox itself is identical, however, the bell housings differ to suit the parent engine. There are also two types of T-50 gearbox, referred to as 20 and 22 spline. This relates to the number of splines on the gearbox output shaft. There is also a difference in the diameter of the input shaft bearing, which is covered by the bell housing: 62 mm vs 68 mm. The 68 mm bearing is in the 22 spline gearbox. The 22 spline gearbox is more desirable as it is stronger. It is also what all RWD 4AGEs came with.

In general terms gearboxes made 1983 or newer are 22 spline. This means that 3T, 1S, 3A and 4A engines have 22 spline units. 2Ts are 20 spline - so be careful. The AE 85/86 and AA 63 series T-50 gearboxes are 650 mm long from the engine end of the bell housing to the centre of the gear lever mount, however, apparently some tail shaft housings fitted to earlier 20 spline gearboxes are shorter, hence allowing relocation of the gear lever with some mixing and matching of components. I have never seen one of these gearboxes.

In reality a 22 spline gearbox is the only one you can use because it is the only one that will mate correctly with an A series bell housing and handle the power.

K-50 Gearbox
The K-50 gearbox has an integral bell housing, utilises a cable clutch and comprises two main alloy sections: front casting with integral bell housing and the separate tail housing. There is also a pressed steel plate that bolts to the bottom of the front section.

The K-50 is normally found behind 3A 1500 cc SOHC engines fitted to AE 70 and AE 85 Corollas etc. The ONLY K-50 that will fit comes behind a 3A engine - Bell housings off any other motor will NOT fit a 4AGE. These gearboxes are all 20 spline.

The K-50 is ideal for 4AGE conversions into KP 61 Starlets or Escorts etc, ie cable clutch cars. Although it is not as strong as the T-50 you will probably get away with it in a light car with moderate power output and sane driving.

In either case ensure you get the corresponding bell housing front cover plate (that bolts to the back of the block just ahead of the flywheel) and the 2 cast stays that bolt between the bottom of the block and the lower portion of the bell housing. Apparently the rear crankshaft bearings can flog out if these are omitted.



Gear Ratios
Although there are close ratio gear sets available for the T-50, all factory boxes have one set of ratios, irrespective of the engine. The K-50 also only has one ratio option.

Gear Ratios
1st
2nd
3rd
4th
5th
Reverse

T-50
3.587
2.022
1.384
1.00
0.861
3.48

T-50 TRD#1
2.63
1.891
1.38
1.00
0.861
3.48

T-50 TRD#2
2.341
1.607
1.195
1.00
0.886
3.48

T-50 TRD#3
2.960
1.607
1.195
1.00
0.886
3.48

T-50 Quaife
2.347
1.733
1.379
1.144
1.0
3.48

K-50
3.79
2.22
1.44
1
0.87
4.32


Power Handling
As mentioned above there are two types of T-50 gearbox - 20 and 22 spline output shaft. The 22 spline gearbox is stronger and is capable of handling around 200 horsepower in a Lotus Seven type car (i.e. 600 kg) almost indefinitely – and often more, depending on the driving style.

The K-50 will handle the lesser powered 4AGEs in a normal weight car, however, the T-50 is recommended. The K-50 really comes into its own for easy conversion of Escorts, Starlets and early Corollas etc with cable clutches to 4AGE. Although the gear lever may require a new hole in the transmission tunnel it is quite likely the K-50 will bolt to the existing Starlet/Corolla gearbox cross member, requiring only engine mounts to be fabricated. (Note - the 4AGE will bolt into 3A sub-frames - and some KE 70 series Corollas came with 3A engines…)

I would certainly not recommend putting a K-50 behind a 4AGZE…

Bolts to Mate Engine to Gearbox
T-50

Application
Number Off
Diameter (mm)
Thread Length (mm)
Thread Pitch (mm)

Starter Motor
2
10
50
1.25

Bell Housing Bottom
2
12
75
1.25

Bell Housing Top
2
12
55
1.25

Stays to Bell Housing
4
10
40
1.25

Stays to Block
4
10
28
1.25

K-50

Application
Number Off
Diameter (mm)
Thread Length (mm)
Thread Pitch (mm)

Starter Motor
2
10
50
1.25

Bell Housing Bottom
2
12
60
1.25

Bell Housing Top
2
12
60
1.25

Stays to Bell Housing
3
10
50
1.25

Stays to Block (1)
2
10
25
1.25

Stays to Block (2)
2
10
35
1.25


The bolts are high tensile and quite expensive to buy new, so I suggest you buy the bare minimum you require. If the exact bolt sizes are not available, you may have to buy the next longest bolt and cut to size. Don’t forget to use spring washers. Ideally get the factory bolts from a wrecker.

Flywheels and Clutches
There are 3 basic clutch types, as follows:

Clutch Diameter
Normal Fitment
Notes

7 7/8" (200 mm)
Pre 89.5
Normal 4AGE fitment

8 3/8" (212 mm)
Post 89.5
May be fitted to some earlier MR2s

Also fitted to 4/7AFE and 20 Valve.

Largest clutch to fit in T-50 bell housing.

8 7/8" (224 mm)
All 4AGZE
Will not fit in T-50 bell housing.


Clutches and flywheels are interchangeable between all 4AGE variants (beware that 4AGEs have 8 bolt flywheels compared to 6 bolt for the lesser family members), however, they must be changed as a unit - a 212 mm pressure plate will not fit the other flywheels.

The 200 and 212 mm clutches will fit a 22 spline T-50 gearbox and the clutches and flywheels fit inside the bell housing. The 200 mm clutch fits the K-50, but I am unsure if the 212 mm will. All the clutches fitted to the various 4AGEs will work with the standard T-50 release bearing etc. Use a 5/8" clutch master cylinder.

The 224 mm 4AGZE clutch and flywheel assembly will not fit inside the T-50 bell housing, and the 224 mm clutch plate has a larger diameter spline than the T-50 input shaft - in fact it fits the W-55 series ‘Supra’ gearboxes.

Spigot Bearing
Any FWD 4AGE will not have a spigot bearing in the back of the crank for the gearbox input shaft to mate with. It pays to check and replace if necessary. The standard RWD 4AGE bearing fits all 4AGEs. This bearing MUST NOT be omitted otherwise the front gearbox oil seal dies, you get an oil leak and have to pull the gearbox out to change it. The front gearbox bearing won’t like it either.

If you need to get an old bearing out the easiest way I know is to squirt/pack grease in through the centre of the bearing to fill the cavity behind it. This area is reasonably large so don’t be surprised when it seems to take forever to fill up. Then take a close fitting bolt, place it in the centre of the bearing and hit it with a hammer (several times). The hydraulic pressure will force the old bearing out. Don’t forget to use safety glasses etc.

Starter Motor
Easiest option is to use the starter motor that is correct for the gearbox, so make sure you buy it when you get the gearbox. Don’t forget the cover plate that goes between the back of the engine and the front of the bell housing too - you will have to remove the flywheel to get it. The 4AGZE starter motor is incompatible with RWD gearboxes. 20 valve or red top flywheels (they are the same) work just fine with AE 86 starter motors.

Speedo Drives
The standard speedo drive comes directly out of the gearbox tail shaft housing. If you have a really tight transmission tunnel then a VDO etc angle drive can be used to allow the speedo cable to lie parallel to the gearbox. Cheaper option is to look under automatic RWD Celicas etc – most had a factory angle drive that will mate with a T50. There are a couple of different angles available.

Speedometer Drive Corrections
If you change your overall tyre size or differential ratio, or mate the gearbox to a completely different speedo then you will need to make a speedo error correction. My thanks to Neil Fraser for the following information:

"The gearbox speedo worm drive ratios I know of include 5 x 19, 6 x 20, 6 x 22 etc. (ie 5 starts on the worm gear and 19 teeth on the driven gear). Most speedos are 637 rpk, 675 or 1000 rpk (revs per km). So lets say that to cover 1 km of distance your output shaft at the gearbox will turn how many revs?

Say a tyre diameter of 590mm: Circumference = 22/7 x .59 = 1.854m
Axle revs: 1000/1.854 = 539.37
Output shaft revs: 539.37 x 4.11 = 2216.8284
Say your speedo is 675rpk (should be written on back somewhere) - required speedo cable revs: 2216.83/675 = 3.284, so therefore best ratio is about 6x20 (3.33)

The small gear will have written on it the number of starts on the worm it would be compatible with (ie 5 or 6). Using a 5 start gear on a 6 start worm is always terminal. The worm slides off easy enough but requires practically stripping the whole gearbox…"

Differential Ratios
The 4AGE loves to rev. The factory RWD cars come with either a 4.1 or 4.3 differential ratio, 4.3 is recommended. For any car running a Ford Escort type diff 4.44 is the recommended ratio. If you take an AE 86 with a 4AGE for a drive and you find it is uninspiring check the axle code on the chassis plate - if it is T-292 it is 4.1 ratio. A car with a T-282 (4.3) ratio goes much better. If the last digit is a 3 or 5 then you have just found a limited slip diff. As a comparison the AE 111 20 Valve uses a 4.312 diff ratio.

Remember that a 0.86 5th gear combined with a 4.44 ratio diff is equivalent to a four speed gearbox with a 3.8 diff.

Any good tyre shop should be able to supply rolling diameter specs for the tyres it sells. If not then rolling diameter (excluding tyre squash due to car weight - which you can assume to be consistent) can be figured thus: tread width * aspect ratio gives side wall height. Multiply this by 2 (two side walls contribute to one diameter overall) and add to it the rim diameter.

Thus 195/60 x 14 equates to (195 x 0.6 * 2) + (14 * 25.4) = 589.6mm = 23.2 in. Multiply this by pi to give circumference = 3.1412 x 0.5896 = 1.85 metres, so for every revolution of the wheel the car moves by 1.85 metres.

My car does 6500 rpm in top gear at max speed - that is 6500/0.86 (fifth gear ratio) = 7558 drive shaft rpm. This in turn passes thru’ a 4.44 diff ratio, so divide 7558 by 4.44 to give 1702 axle rpm. This means that a wheel is doing 1702 rpm, which is 1702 * 1.85 = 3149 metres/minute.

Multiply by 60 (minutes in hour) then divide by 1000 (metres in kilometre) and you get 188.95 kilometres/hour speed, which if you divide by 1.62 gives 116.6 mph. My car indicates 115 mph at this speed - not bad speedo calibration huh?

To compare a 185/70 x 13 tyre (what I used to have): (185 * 0.7 x 2)+ (13 * 25.4)= 589.2 mm diameter vs 589.6 mm for a 14 inch 60 profile - pretty close to the same, especially once tread wear occurs.

A friend runs the same box and diff as me, but 185/60 x 13 tyres: (185 * 0.6 x 2) + (13 x 25.4) = 552.2 mm diameter vs my 589.6: now divide one by the other: 552.2/589.6 = 0.936 ie his diameter is 0.936 or 93.6% of mine. Since this directly relates to engine rpm, and our gear ratios are the same (otherwise you have to account for these in the same way) his engine will do 1/0.936 more rpm at the same speed in the same gear = 6940 rpm.

Alternatively if I put his wheels on my car, my speed would drop to 116.6 * 0.936 = 109.1 mph at the same revs (6500).

4AGE RWD Conversion
Engine Mounts
Depending on the car it may be easiest to use the standard 4AGE RWD engine mounts. 3A RWD engine mounts (sourced from AE 85/AE 70 Corollas) are identical to 4A ones and so are a direct bolt on fit. A 4AGE will directly bolt into any car originally fitted with a 3A engine – but it may not necessarily clear the firewall etc.

If you need to fabricate custom mounts then just use the block bosses that best fit the car the engine is going into. Be sure to use at least 3 and preferably 4 bosses on each side. The standard RWD set up uses the 4 bosses just behind the oil filter, and 3 on the intake side in a similar location.

Alternator Mount
The RWD alternator mount locates the unit low on the intake side of the engine, which may be of use if the FWD location is inconvenient, however, this is in the way of the supercharger on the 4AGZE. The FWD 4A SOHC and 4AFE narrow angle twin cam gear engine (and possibly the naturally aspirated MR2) mount places the alternator high on the exhaust side. On AE92 4AGE Corollas the alternator is mounted high on the intake side of the engine and the A/C and P/S are mounted on the exhaust side lower down.

Power Steering and Air Conditioning
Some RWD AE86 Corollas and AA 63 Celicas were fitted with both air conditioning and power steering, so there are a variety of brackets available, however, they are not that common. The FWD supercharged engines mount the alternator, A/C and P/S all on the exhaust side, as the supercharger occupies the intake side.

Oil and Sumps
Most RWD transplants mount the engine upright as opposed to the slight angle it sits on in the FWD set up. Note that a factory RWD installation has the engine on a slight angle too. The engine is on the original angle when the base of the sump is almost horizontal. Mounting the engine so it is vertical does not effect the oil delivery, however, the majority of people installing the engines into Lotus Seven type sports cars also shorten the sump. They tend to chop the sump off level on the ‘high’ side which takes about 30 mm out the ‘low side’. Provided the oil pickup is modified in the same manner there are generally no problems.

My sump has been shortened as above. I run my engine oil level about 5mm above the ‘full’ mark on the dipstick and in 140,000 km have not had any problems. Fitting a 3mm steel ‘bash cap’ to the bottom and front of the sump is wise in low cars. I have about 3 inches of sump ground clearance - and the bash cap has taken chunks out of the road on many occasions. Be aware that my engine has moved up to 20 mm backwards when it hits these obstructions - so ensure you allow sufficient clearance...

The mid 1989 onwards engine pistons are oil cooled via little jets aimed up the bores. These engines have a higher capacity oil pump to make up for the increased demand.

Factory sumps are relatively cheap to buy from Toyota (about 120 bucks) should you need to replace yours. If you are fitting the engine into a car where the sump bowl is at the wrong end then just bolt the sump to a sturdy steel plate or a thick piece of wood and cut it off at a suitable height up the side. Turn the chopped portion around and bash/fabricate it until it lines up, then weld it back together. Be careful when modifying the oil pick up; it needs to sit in a similar position at the other end of the engine with nice smooth bends in the suction pipe work. Be warned that the sumps differ between early and later blocks – make sure you get the right one. Later block sumps tuck in slightly on one side compared to earlier ones.

Oil Drains
The 16 Valve engines have a tendency to top the head up with oil at high RPM. On the earlier engines this can result in oil getting into the intake manifold via the cam cover breather and turning the motor into a 2-stroke, especially if you are cornering at the time. Not a good look, trust me. I thought I had killed it...

Some cars also have oil surge in this state with attendant drop off in oil pressure. I stress that this tends to occur in race applications only. This can still occur with the ‘Red Top’ motor despite the external oil drain. Most people solve the problem by fitting an external catch tank with a drain back to the sump, with the intake breather taking suction from this catch tank.

The 20 Valve has very large oil drains and does not suffer from this problem.

Oil Coolers
Some 4AGEs come with a factory oil cooler. This is a thermostatic bypass type with the oil being cooled diverted from the engine oil system to the oil cooler and then returning directly to the sump via an external fitting. This is in contrast to aftermarket sandwich plates that are either thermostatic bypass or full flow. These divert oil from the oil filter to the oil cooler prior to going through the engine oil galleries.

To use the factory set up on another car you need the oil pan/sump (unless you modify one to take a return fitting), the sandwich plate that bolts on between the oil filter and block, and the oil cooler core. Some MR2s have an oil cooler also, however, they use radiator water for cooling via an in-line heat exchanger as opposed to a radiator. The sandwich plates and sumps are identical.

Fitting an aftermarket thermostatic sandwich plate and oil cooler in my 20 Valve Lotus Seven Replica reduced the radiator water temperature by ½ on the gauge, ie previously the gauge sat at ½, and now it sits on ¼. I can't tell you what that means in terms of actual temperature as my gauge only has cold and hot markings.

Cambelts
By all accounts if a cambelt fails on any 4AGE the valves still do not hit the pistons, however, it is obviously wise to change the belt when you get the engine. Change the belt every 100,000 km, or sooner if you give the engine a hard time. I once bought an AE 86 with several teeth missing from the cambelt, and it still went like a rocket...

Cambelts are fairly cheap if you go to the right places - I got one for about 40% the cost of the Toyota part by going to a general auto parts distributor. Remember, belts are like timing chains in that they are all the same basic design and it is just the lengths that vary. The 20 Valve belt is 2 teeth shorter than the 16 Valve belt as the cams are closer together due to the valve angle being less. When I got one from a general auto parts shop they said that belt was listed as ‘Lada Samara’!

Radiator and Thermostat
The 4AGE comes stock in RWD form with a 5.6 litre cooling system. The use of an oil cooler in later engines with oil cooled pistons may enable a smaller radiator to be used due to the increased amount of cooling done by the oil. Note that all 4AGEs use the thermostat to let cold water into the engine (as opposed to letting the hot water out), hence the thermostat side of the plumbing should be connected to the bottom radiator tank.

In this manner when the water in the head heats up the thermostat will open and let cool water (from the radiator bottom tank) into the engine. Hot water leaves the engine and returns to the top radiator tank. All engines have a thermostat bypass so that water will still circulate (due to the water pump) around the engine when the thermostat is shut, thus eliminating any hot spots caused by the water not moving and also preventing the water pump cavitating.


Water Plumbing
The 16 Valve 4AGE RWD thermostat and water pump plumbing assembly is the simplest to use in RWD configuration and has both supply and return on the intake side of the engine. If your radiator inlet (the top header tank connection) is on the LHS of the radiator then a FWD 4AGE top radiator hose can be used as it fits across the front of the engine and with a little modification should connect to the radiator inlet.

Any FWD engine (except 20 Valve or supercharged motors) will fit this plumbing, which is the easiest way of adapting a later engine to RWD configuration. You must use a RWD water pump if you wish to use an engine driven radiator fan otherwise the water pump bearings will fail.

Conversion of 20 valve engines to RWD water plumbing takes a bit more effort. There are several ways of achieving the end result. I run the complete standard set up, utilising long hoses from the radiator to the standard points on the engine (water outlet by #4 exhaust port, inlet at back of the head. This works fine if you have the room. A tidier method may be to make steel pipes for the bulk of the run with flexible hoses just at the ends. I run a stainless return pipe over the top of the exhaust manifold to simplify the plumbing run and minimise the chance of airlocks.

Alternatively you could fit the rear wheel drive water pump with integral thermostat. This requires a fair degree of work as you end up changing the inlet and outlet points to the system. The advantage is that you can then use the standard RWD radiator and hose set up. The pump housing from a RWD 3A engine can also be used, however, you may find that the 20 valve water pump front section rubs on the rear housing – if this occurs file down the blades on the pump impeller until they clear – about 1 mm will have to be removed. The water pump with integral thermostat now becomes the point at which the water enters the engine.

The outlet to the radiator needs to be fabricated (or otherwise concocted) to mount to the head by #1 inlet port in replace of the original alloy casting that connects to the back of the original 20 valve water pump. Care must be taken to ensure it clears the air box etc. A bypass line needs to run from the top of the water pump to this new outlet, to maintain circulation when the thermostat is shut. One the RWD set up this is achieved by a short steel tube between the pump body and outlet, sealed by O-rings. This will be almost impossible to replicate, so my suggestion is to thread the pump housing to take a suitable hose fitting and run a hose to a similar fitting on the outlet pipe that you have fabricated.

At the back of the head you need to blank the original outlet by #4 exhaust port, and remove the factory thermostat block at the back of the head. There are two options here: either bolt a flat plate across the back of the head to seal the two water channels after having drilled out the dividing wall between the two channels – a long drill will reach in through the original outlet by #4 exhaust port – make sure you open up a large enough hole. The various temperature sensors can be fitted into the flat blanking plate. If you want to use the heater, take one tapping from the blanking plate and the other from the back of the water pump.

Alternative to drilling through the cylinder head dividing wall, you can fabricate an external connection between the two channels, with the sensors mounted as appropriate. Note that the fan switch must be mounted in the water inlet to the thermostat from the radiator.

The third method involves leaving the water pump as standard, but utilising a remote thermostat housing as fitted to the transaxles of transverse 4AGEs and 20 valves etc. This unit needs to be plumbed into the back of the head via suitable remote connections to ensure the water flow remains standard.

Supercharged engines need to follow this last method due to the supercharger location interfering with the RWD water pump mounting, however, an alternative method is to remove the supercharger and fabricate a custom mount to fit it to the exhaust side of the engine. This allows for not only the fitting of the complete RWD 4AGE water plumbing system, but also allows for the alternator to be mounted as per the RWD set up. A final bonus (on earlier, big port heads) is the fitting of the RWD inlet manifold, which then provides a simpler path for plumbing the air from the supercharger via an intercooler to the inlet ports. Supercharger manifolds will have to be fabricated to suit, however, an alternative is to seize the opportunity to mount a 1G supercharger and utilise the added boost.

Sensor Block
All 16 Valve engines have a sensor block at the back of the head which contains the ECU water temperature sensor and the cold start injector thermo time switch, plus the take off for the heater. On FWD cars and MR2s this unit protrudes out the back of the engine adding several inches to the overall length once hoses are attached, while on RWD engines the unit runs across the back of the head and is much more compact, adding only about 1 inch to the overall length of the head. The RWD heater hoses also lie flat against the back of the head as opposed to exiting directly backwards as on the transverse engines. These units are interchangeable between all 16 Valve engines, including supercharged models.

The 20 Valve motor has a completely different head with a large sensor and thermostat block at the rear. This block also has the supply and return to the heater, and once heater hoses are connected protrudes several inches behind the head. Coupled with the distributor, which is driven off the back of the exhaust cam, installation in a normal RWD car may best be achieved by either locating the engine further forward in the engine bay (if possible) or recessing the firewall as required. Bear in mind that moving the engine further forward may result in sump clearance problems. We are working on an electronic module that enables the distributor to be radically cut down to improve clearances.

Both radiator inlet and outlet connections face the LHS of the 20 Valve engine, ie the exhaust side. The outlet to the radiator is immediately behind #4 exhaust port. The easiest way to mate the radiator plumbing up in RWD configuration on the 20 Valve is to fabricate a pipe that runs from the water outlet forwards, over the top of the exhaust manifold. The pipe needs to be roughly hockey stick shaped in plan view, and can be secured to the head outlet flange at the rear LHS of the head and to the lifting eye bolts at the front LHS of the head. Inlet plumbing needs to run from the radiator bottom tank along the bottom of the engine and then up to the inlet on the thermostat housing at the back of the head.

If you are fabricating your own cooling lines be careful to ensure there are no air locks in the system otherwise you will cook your motor.

20 Valve Distributor
The 20 valves pose a problem with RWD conversion in that the distributor sticks out the back of the exhaust cam, and increases the firewall clearance required. One option is running a ‘black box’ (which some friends of mine are working on) to run the dizzy base as just a crank angle and RPM sensor, and flip/flop the ECU igniter output between 2 coils to operate as a twin coil waste spark system.

Alternatively you could mount the dizzy cap on the front of the cam – which would require more fabrication. If you are running aftermarket injection this is not an issue – just run a direct fire coil system.

16 Valve Inlet Manifolds
With the exception of the RWD AE86 and AA63 4AGEs all other engines are configured with the throttle body facing the ‘rear’ of the car ie flywheel end of the engine. The RWD set up is the ideal one to use as the open end is towards the front of the car. On 83.5 - 87.5 engines (Blue and Black Tops) this is not a problem as the RWD manifold will directly bolt in place of the transverse one.

Later 16 Valve models (87.5 - 89.5 Red and Black Top or post 89.6 Red Top engines) all face backwards, however, intake manifolds are interchangeable between all TVIS engines (ie up to 89.6 when the Red Top was introduced).

If you do not have access to a RWD manifold or you have a post 89.6 Red Top then there are two possible options (short of fabricating your own manifold or converting to carburettors): cut both ends off the manifold and swap the throttle body to the front of the manifold and blank the rear, or else cut the intake runners and weld the entire top half of a RWD intake on (assuming the intake runners line up).

If bonnet clearance is a problem the 16 Valve manifolds can be shortened by cutting a section out of the vertical part of the intake runners and welding back together . My original engine was shortened 30 mm in this manner with no apparent loss in power. Be warned that this will place the cam cover breather almost horizontal and hence an oil catch tank is a wise idea. This all means that realistically the oil filler cap and plug leads are the limiting factors for bonnet clearance on 16 Valve motors.

20 Valve Inlet Manifolds
The 20 Valve air box also has the inlet to the rear of the engine, however, both it and the trumpets it contains can be bolted on upside down, which will place the inlet at the front. Unfortunately this looks somewhat unattractive and requires even more height. The air box can also be shortened, however, it is made of several layers of thin plate and is difficult to weld. Stainless steel welding rod works best. Alternatively cut the inlet off the back of the airbox and modify it to fit on the front. Of course, aftermarket injection negates the need for the airbox. The black top 20 valve runs MAP sensing and may be able to function happily without the air box at all. It also has rubber trumpets. The plastic trumpets inside can be cut and glued shorter also, however, some compromise of the smooth internal walls is required. In reality fabricating an entire air box would not be a complex operation and some side-draught carburettor trumpets are a close match.

Air Filters
If the engine runs a MAP (Manifold Air Pressure) sensor air measurement system then you can literally fit an air filter directly on the end of the throttle body. Some K&N filters fit perfectly, however, a cold air induction system is more effective but more complex to fabricate. If the engine is AFM (Air Flow Meter) then you will need to connect this to the throttle body via a suitable tube. 20 Valve engines run an air box which a length of MK 2 Ford Escort heater ducting concertina tube fits nicely between the air box and AFM. A side-draught carburettor (ie Weber DCOE) type air filter with a modified base plate can be adapted to fit the AFM. Alternatively MR2s have a neat adapter that bolts on to the inlet side of the AFM that a round air filter will fit on to.


Throttle Linkages
If a standard throttle cable cannot be made to work, or if you do not have one, then brake cables and fittings off bicycles provide an excellent cost effective source of components. Mountain bike cables tend to be heavy duty and Teflon lined. Go to a good bike shop and order stainless steel brake cables as galvanised cables will just rust up and break off. My cable lasts about 2 years before requiring replacement. If you have the room run a dual system (two cables instead of one). Much easier to get home with a broken cable that way…

Really smart throttle systems use the springs under compression to push the throttle closed as opposed to the normal tension system. If you think about it, the compression system is less likely to fail and if it does will still provide some closing assistance in most cases.

If bonnet height on a 20 Valve is critical then it becomes necessary to remove the complex linkage system from the top of the throttle bodies and fabricate a twin side-draught type linkage that enters from underneath the throttle bodies. You may also need to shorten the oil filler cap - I certainly did…

EFI Fuel System
Although Toyota have their own EFI system (Toyota Computer Control System - TCCS) it is basically a derivative of the Bosch Motronic Digital EFI system. This is good news as Bosch is used world-wide by a large number of manufacturers, which means that many components are interchangeable. In this manner a fuel pump from any Bosch type fuel injected car will be adequate (assuming the flow rate is high enough) and bigger injectors can be sourced from other vehicles if you are running injection that has to feed a heavily modified engine.

If you run the EFI system then you will need a high pressure EFI system fuel pump delivering about 40 PSI. The minimum plumbing required is a supply line and a return to the tank. Either an internal (in fuel tank) pump as originally fitted or an external pump can be used. If you don’t want to buy new or aftermarket then external fuel pumps from Nissan 3 litre straight 6 cylinder engines as fitted to VL Commodores etc have proven effective.

The fuel supply must be at a constant pressure so it is wise to use an internal baffle in the tank around the pump pick-up. Surge tanks may be required for external pumps, however, I believe that a properly designed in-tank pick up system will alleviate the need for one. It is most important to use the correct diameter fuel lines - the supply needs to be at least 8mm and the return 6mm diameter otherwise fuel starvation will occur.

If you decide to run the factory EFI system then it is best to get the relevant Factory Wiring Diagram and as much of the original wiring loom and sensors as possible. The standard set up has 3 plugs in the ECU: two go directly to the engine with the other going to the car for such things as power feeds, instruments, warning lights and sensors etc that are not on the engine.

As the car side of the wiring diagrams are very much the same, if you cannot get the exact wiring diagram for the engine then you should be able to figure it out from the standard car. The code for the plug pins is written on the circuit board near the sockets inside the ECU, except for Japanese model 4AGZE ECUs which do not have any labelling.

If you want to run a ‘check engine’ warning light (which is also the means of displaying diagnostic codes) then you must run a speed sensor which is normally part of the speedometer. If you do not run this sensor you will get an intermittent trouble warning on the check engine light, however, engine performance is not affected. Unfortunately if you fit the speed sensor it will also limit the car to approximately 180 km/h top speed. If you do not have the original speedometer a magnet bonded to the drive shaft and a reed switch connecting the ECU to earth works.

It is wise to utilise the ‘circuit open’ relay system which shuts down the fuel pump if the ignition circuit is on but the engine is not running (as may happen after an accident). If this part of the wiring is missing in a MAP sensor car then a relay operated cut out connected to the oil pressure switch as a trigger is just as effective, however, a bypass for starting should be fitted. This is triggered from the ‘start’ position on the ignition switch. An engine fitted with an AFM has a fuel pump switch built into the AFM unit itself which shuts down the pump when there is no air flow.


Exhaust System
All 4AGEs (including the 20 Valve) have identical exhaust port dimensions and spacings. The 20 Valve has 4 into 2 factory tubular extractors while the remainder have 4 into 2 cast manifolds. The 20 Valve head manifold bolts at the extreme ends are in a slightly different location to the 16 Valve engines, however, the 16 Valve manifolds can be modified to fit quite easily, and vice-versa.

The standard RWD manifold is a wise option if it will fit in the car as by all accounts there is little to be gained by replacing it with a set of aftermarket tubular exhaust headers, however, there is much to be gained by going to a larger diameter exhaust system from this point back.

The standard RWD system has 28" long secondaries between the manifold outlet and the tail pipe junction. The TRD RWD exhaust system utilises the original cast manifold and then breaks into two 42 mm diameter secondaries that are 485mm long to the junction, followed by a 330 mm long 50mm diameter pipe to the muffler, a 640 mm long section containing the muffler and finally a 520 mm long megaphone expanding out to 57 mm diameter.

Local tubular headers I have seen are 4 into 1 design and have either 1½ " or 1 5/8" diameter primaries and a 2" tailpipe. The headers are not very precise - the RWD primary lengths range from 21-28", and FWD from 12-14". I have been told that 2.5" exhaust systems on 4AGEs are very loud and that 2.25" is a better diameter to go with.

Best I can figure (from a graph I got sent) the ideal is about 28" primaries on 4 into 1 headers for a 4AGE. The set I was building for the stillborn 4AGZE powered Ford 105E Anglia (1964 car) were 4 into 2 into 1 with 14 inch long 1 3/8" primaries, 28 " long 1 7/8" secondaries, and 2 1/4" tailpipe. This was based on the best I could figure it out and what I could get to fit. I was building them from pre-formed mandrel bends, which were to be welded together, hence I would have had a very accurate means of establishing the lengths. The primaries and secondaries would have been within a couple of mm in length to each other.

Personally I would not have bothered with a custom set of headers, especially in what was basically a road car, however, the Anglia engine bay was just too tight for anything off the shelf to fit. Also if you do not have the factory manifolds an off the shelf set of headers, while they may not be ideal, will still work and provide a cost effective solution.

Conversion to Carburettors
Some people (poor, misguided souls!) convert 16 Valve engines to carburettors. 40 or 45 mm Weber or Del'orto side draught carburettors tend to be used. 40 mm tend to be a little smoother, however, 45 mm give more power but are a little less tractable - although by no means difficult to live with. Be aware that the correct intake manifold must be used for the engine: TVIS engines require a different manifold to later models. I do not have the owner’s details for what follows:

"With TRD 268 duration L10 Cams on a head with 10.1 compression (via skimming), tuned headers and 45 mm Webers I use 145 mains, F15s and 190 correctors. It's pretty much set up for high end power and is a bit fluffy down low. It gets driven relatively hard (at least in low gears) most of the time, and I seldom get into 5th gear".

Apparently 38 mm chokes are the go.

The 20 Valve engine could also be run on carburettors, however, a RPM trigger would be required to activate the cam timing solenoid valve at around 4500 rpm, and an inlet manifold would have to be custom built.

Carburettor Ignition Systems
There are a few different options to get the ignition system to run with the engine converted to carburettors. One way is to use a stock distributor but operate it via an aftermarket ignition module. These can work well, but cost about $400.

Another method is to utilise a Bosch ignition module part no 249-9-222-067-016 to run the distributor. It does not allow advance, but this may not be a real issue for you if you are track racing etc. The module has 4 terminals. Terminal '15' is fed with 12 volts when the ignition is turned on. Terminal '16' is wired to the negative post on the coil (any old coil will do). Terminal '7' goes to the black wire coming from the distributor. Terminal '3' is connected to the red wire. The white wire is cut and not used. The modules cost about $60 from a Bosch Dealer.

Yet another option is to replace the 4AGE distributor with a more conventional one. 2T or 2K electronic ignition type distributors are a popular option, but require a bit of modifying to fit, including fitment of the 4AGE distributor drive gear. You can then run vacuum and mechanical advance and use the standard coil/igniter pack.

Ross Mackenzie runs a 'Fraser' Lotus 7 replica powered by a 3SGE on carbs. He uses a Nissan distributor to run his engine, as follows:

"The dizzy in my car is from a Nissan E15 non turbo engine. These were fitted to mid 80's Pulsars and Sentras (probably others as well). The end of the dizzy body needs to be machined down to match the std 3SGE dizzy dimensions as does the end of the shaft, which is then fitted with the Toyota drive gear. A clamping block needs to be machined (or filed). This block is bolted to one of the original clamping holes on the head. I have utilised the Nissan adjustment slot which bolts to the clamping block, giving a good range of rotation. Once the dizzy is positioned on the engine the basic geometry of the block and dizzy adjustment will become self evident.

The vacuum advance is removed and the base plate is locked down. I have sealed the hole with a piece of aluminum glued in place with Devcon. Use the standard Nissan dizzy cap and aftermarket 8mm leads. If you wish to retain the Toyota plug end they will have to be drilled out to accept the 8mm leads. I guess you could use aftermarket ones. All the electrics are contained in the dizzy (no separate igniter) with only 2 wires. On mine they are blue (-ve) and black and white (+ve). Just hook them up to the coil.

The advance is 15-17 degrees at idle and 32-34 degrees at around 3000 rpm. According to Lynn Rogers and Neil Fraser, this is perfect for the 3SGE. Total cost.... around $150 including Dizzy, new rotor, cap and leads. I got the machining for free.

To answer your question about why I removed the mechanical advance - well, because I was told to. I'm not sure of the reason for only using mechanical advance, but it is an old method. I think that it is because we are already running so much advance at idle (16 degrees-ish on mine) that it just isn't required. Regardless of theories it works well. It is pretty much the same as far as the advance curve goes - I don't have a good understanding of the intricacies of this subject, but at the end of the day this particular dizzy has the required range and rate of advance. I believe that the advance curve is similar to that in the custom computers - remember that this mod has only been used on carbed engines. Most of us are running 45mm DHLA or DCOEs with 40mm chokes and jetted to suit the intended use (road or track)."

Finally the distributor off the 3A engine looks like it may have some promise - it is all self contained also.

Turbo Charging
The Supercharged 4AGZE has a steel crank, stronger block than the earlier models and forged pistons (which is why they rattle a little until they warm up), so if you want to build a turbo engine then this is an excellent starting point. People have also used this engine’s crank and block as the basis for naturally aspirated race engines. In many ways the earlier 4AGZE engine is better for high horsepower as it has bigger head ports and slightly lower compression (but it does not have oil cooled pistons).

I suspect the supercharged ECU will happily run with a turbo instead, up to around 190 horsepower, provided the injectors do not max out.

Intercoolers
The supercharged engines come with a factory air to air intercooler. On FWD cars it has 12 rows and sits on top of the head; cooling air is delivered by means of a bonnet scoop. MR2s have an 18 row intercooler located on the side of the engine compartment; a fan is used to help draw air though it. In both cases the plumbing from the supercharger to the inlet valves is biased towards the rear of the engine hence a fair degree of modification or fabrication will be required if you turn it around for RWD.

The intercoolers themselves have both the inlet and the outlet on the same side. Obviously if you can fit an intercooler behind your grille then you will gain better cooling effect. And, by the way, water/air intercoolers should only ever be used if your space restrictions prevent you running an air to air intercooler - they will NEVER perform as well as a straight air to air unit. It is all to do with thermodynamics and heat transfer losses. The more heat transfers you have, the less efficient the cooling process is.

The catch 22 is that an air to air intercooler will require longer air system plumbing, hence adding to lag.

If I was to do another 4AGZE RWD conversion I would be tempted to mount the supercharger on the exhaust side of the engine. This would also make fitting a larger blower possible. My reasoning is that I could then fit a standard RWD inlet manifold, thereby simplifying the front mounted intercooler pipe work, and also then being able to use RWD water plumbing. An added bonus would be mounting the alternator on the intake side of the engine as per normal RWD. Power steer and aircon would make it somewhat more complicated, but not impossible. About the only other issue would be the blower bypass plumbing, which would have to be fabricated.

4AGZE Modifications
It is possible to put a larger crank pulley on the 4AGZE to drive the supercharger faster and so make more boost. 165 mm is the largest pulley that will fit, and one will make about 10 PSI boost. Boost over this can be achieved by fitting a smaller diameter SC pulley, however the SC rotors are Teflon coated and this can apparently melt above 10 PSI (although some say 12).


The supercharger runs a very thin oil, which is critical It is very expensive to buy from Toyota – try Castrol VMX instead.


The 4AGZE has a ‘SC 12’ supercharger, whilst the 6 cylinder 1G-GZE (which looks like a 6 cylinder 4AGE) has a ‘SC 14’, which is bigger. This supercharger will NOT fit on a 4AGZE as it is longer than the SC 12, and therefore interferes with the intake plumbing. If you are fabricating your own intake system this will not be a problem.


7AGE
The 4AGE is part of a family of engines - there are also 2A, 3A/5A and 7A engines which correspond to 1300, 1500 and 1800 cc capacities respectively. It is possible to mix and match parts within the A-series engines, hence producing a 1300 cc 16 Valve motor, which some people are doing for 1300 cc competition classes, or an 1800 cc supercharged engine…

Conclusion
This article covers the bulk of what I have learned about these engines over the past nine years, and hopefully will make your life a lot easier than mine was when I was starting out.


Naturally Aspirated 4AGE This information is Japanese sourced from Hyper Rev AE 86/92/101/111 Levin/Trueno Magazine Volume 18 (News Publishing Co Japan). Power figures are approximate.

Engine Generation
One
One
Two
Three
Four
Five

Cam Box Colours/ Lettering Colour
Blue & Black on Silver background
Blue & Black on Silver background
Red & Black
Red and Black

(or Red only) on Silver background
Chrome on Silver background
Black on Black background

Valves
16
16
16
16
20
20

Power PS @ rpm
130 @ 6600
130 @ 6600
120 @ 6600
140 @ 7200
160 @ 7400
165 @ 7800

Torque kg-m @ rpm
15.2 @ 5200
15.2 @ 5200
14.5 @ 5200
15.0 @ 6000
16.5 @ 5200
16.5 @ 5600

Power kW @ rpm
95.5 @ 6600
95.5 @ 6600
88 @ 6600
103 @ 7200
118 @ 7400
121 @ 7800

Torque Nm @ rpm
149 @ 5200
149 @ 5200
142 @ 5200
141 @ 6000
162 @ 5200
162 @ /5600

Bore x Stroke
81.0 x 77.0
81.0 x 77.0
81.0 x 77.0
81.0 x 77.0
81.0 x 77.0
81.0 x 77.0

Compression
9.4:1
9.4:1
9.4:1
10.3:1
10.5:1
11:1

Production dates Year/Month
83/5-87/5
84/6-87/5
87/5-89/5
89/5-91/6
91/6-95/5
95/5-99/5?

Car Model
AE82 FWD Corolla;

AE86 RWD Trueno/Levin;

AA63 RWD Celica
AW11 MR2
Early AE92 FWD Corolla/Levin/Trueno;

AW11 MR2
Later (Facelift) AE92 FWD Corolla/Levin/Trueno
AE101 FWD Corolla/Levin/Trueno/

Marino
AE111 FWD Corolla/Levin/Trueno/

Marino

TVIS (Toyota Variable Intake System). Note: TVIS is a set of butterflies that close off one of the intake valve ports per cylinder below 4500 rpm to increase air flow and fuel atomisation. They are operated by manifold vacuum. 16 valve engines without TVIS have smaller intake ports.
Yes
Yes
Yes
No
No
No

Intake Manifold Details Note: Engines fitted to AE86/AA63 are the only 16 valve units with throttle body located at the front of the engine. All other engines have the intake at the flywheel end. RWD models only may make 130 HP; similar generation FWD may make only 118 HP / 88 kW.
Smooth cast aluminium.
Smooth cast aluminium.
Smooth cast aluminium.
Ribbed cast aluminium.
Pressed steel air box. Silver top section, black lower.
Pressed black steel air box.

Exhaust Manifold Details

Note: 20 valve engines have identical ports to 16 valve except extreme manifold studs are in different position. 16 valve manifolds will fit with minor modification.
Cast Iron 4-2 section with 2-1 steel tube secondaries.
Cast Iron 4-2 section with 2-1 steel tube secondaries.
Cast Iron 4-2 section with 2-1 steel tube secondaries.
Cast Iron 4-2 section with 2-1 steel tube secondaries.
Tubular Steel 4-2 section with 2-1 steel tube secondaries.
Tubular Steel 4-2 section with 2-1 steel tube secondaries.

Injection
D-Type Manifold Absolute Pressure (MAP) Sensing. Paired Injector Triggering. Top Fuel inlet injectors.
D-Type Manifold Absolute Pressure (MAP) Sensing. Paired Injector Triggering. Top Fuel inlet injectors.
D-Type Manifold Absolute Pressure (MAP) Sensing. Paired Injector Triggering. Top Fuel inlet injectors.
D-Type Manifold Absolute Pressure (MAP) Sensing. Sequential Injector Triggering. Top Fuel inlet injectors.
L-Type Air Flow Meter (AFM) Sensing. Sequential Injector Triggering. Side Fuel inlet injectors. Note top fuel inlet injectors will fit but require fuel rail from 3rd generation 16 valve due different injector spacing to 1st & 2nd generation engines.
D-Type Manifold Absolute Pressure (MAP) Sensing. Sequential Injector Triggering. Side Fuel inlet injectors. Note top fuel inlet injectors will fit but require fuel rail from 3rd generation 16 valve due different injector spacing to 1st & 2nd generation engines.

Ignition
Electronic Distributor controlled by ECU. HT leads mounted on top of cover between cam covers.
Electronic Distributor controlled by ECU. HT leads mounted on top of cover between cam covers.
Electronic Distributor controlled by ECU. HT leads mounted on top of cover between cam covers.
Electronic Distributor controlled by ECU. HT leads hidden under cover between cam covers. Knock sensor fitted to block under intake manifold between #2 and #3 cylinders.
Electronic Distributor controlled by ECU. HT leads hidden under cover between cam covers. Knock sensor fitted to block under intake manifold between #2 and #3 cylinders.
Electronic Distributor controlled by ECU. HT leads hidden under cover between cam covers. Knock sensor fitted to block under intake manifold between #2 and #3 cylinders.

Intake ports
Large
Large
Large
Small
Quad Throttle. Engines pre-93/5 (pre facelift) have a horizontal intermediate bell crank between throttle cable and vertical linkage to throttle bodies. Post 93/5 models do not have this intermediate link. Rigid plastic intake trumpets.
Larger Quad Throttle bodies than earlier model. Flexible rubber intake trumpets in larger air box.

Number of vertical block ribs
3
3
7
7
7
7

Gudgeon Pin Diameter
18 mm
18 mm
20 mm
20 mm
20 mm
20 mm

Conrod Big End Diameter
40 mm
40 mm
42 mm
42 mm
42 mm
42 mm

Main Bearing Diameter
48 mm
48 mm
48 mm
48 mm
48 mm
48 mm

External Head to block oil drain (Rear of #4 piston inlet port )
No
No
No
Yes
No
No

Oil Cooled Pistons
No
No
No
Yes
Yes
Yes





Supercharged 4AGZE This information is Japanese sourced from Hyper Rev AE 86/92/101/111 Levin/Trueno Magazine Volume 18 (News Publishing Co Japan). Power figures are approximate.

Power PS @ rpm
145/ @ 400
145/ @ 400
165 @ 6400
170 @ 6400

Torque kg-m @ rpm
19.0 @ 4400
19.0 @ 4400
21.0 @ 4400
21 @ 4400

Power kW @ rpm
107 @ 6400
107 @ 6400
121 @ 6400
125 @ 6400

Torque Nm @ rpm
186 @ 4400
186 @ 4400
206 @ 4400
206 @ 4400

Compression
8:1
8:1
8.9:1
8.9:1

Car Model
AW11 MR2
AE92 FWD Levin/Trueno
AE92 FWD Levin/Trueno
AE101 FWD Levin/Trueno

Production dates Year/Month
86/8-89/5
87/5-89/5
89/5-91/6
91/6-95/5

Injection Type
L-Type Air Flow Meter (AFM) Sensing. Paired Injector Triggering. Top fuel inlet injectors.
L-Type Air Flow Meter (AFM) Sensing. Paired Injector Triggering. Top fuel inlet injectors.
D-Type Manifold Absolute Pressure (MAP) Sensing. Sequential Injector Triggering. Top Fuel inlet injectors.
D-Type Manifold Absolute Pressure (MAP) Sensing. Sequential Injector Triggering. Top Fuel inlet injectors.

Ignition System
Conventional electronic coil controlled by ECU. Distributor cap and leads generally red.
Distributorless ignition system utilising twin coil waste spark system firing two cylinders simultaneously.
Distributorless ignition system utilising twin coil waste spark system firing two cylinders simultaneously.
Distributorless ignition system utilising twin coil waste spark system firing two cylinders simultaneously.

Intercooler
18 row mounted above transaxle.
12 row mounted above engine.
12 row mounted above engine.
12 row mounted above engine.

Intake Port Size Note: TVIS is not fitted to big port heads.
Large
Large
Small
Small

External Head to block oil drain (Rear of #4 piston inlet port )
No
No
Yes
Yes

Gudgeon Pin Diameter
20 mm
20 mm
20 mm
20 mm

Conrod Big End Diameter
42 mm
42 mm
42 mm
42 mm

Main Bearing Diameter
48 mm
48 mm
48 mm
48 mm

Number of vertical block ribs
7
7
7
7

Oil Cooled Pistons
No
No
Yes
Yes


One SAE/British Horsepower is 746 watts/0.746 kilowatts.

One DIN/JIS HP/PS is 735.5 watts.

SAE = Society of Automotive Engineers.

DIN = International Standards Organisation.

PS = Abbreviation for German term for horsepower.

JIS = Japanese Standards Institute.

1 DIN/JIS hp = 0.986 SAE/British hp

So yes, it is true - Japanese horses are smaller than European ones!
 
 Re: Какой двигатель из 4А выбрать?
Автор: Vitёk (---.primorye.ru)
Дата:   давно

Глаза сломал, пока всё это перевел! И какие из этого делать выводы? Этож просто описание двигателей... или я чтото пропустил?
 
 Вопрос!!!
Автор: 61 (---.ats40-pool.donpac.ru)
Дата:   давно

В чем конкретное отличие 4a-ge Black top от 4A-ge Silver top, какой из них мошнее???
Заранее благодарен!!!
 
 Re: Вопрос!!!
Автор: Nebulus [Нижневартовск] (80.237.66.---)
Дата:   давно

Страница посвещенная модификации 4А-ЖЕ

В этой статье я расказываю о различных доработках которые понадобятся , для
того чтобы поднять мощьность двигателя 4A-GE (от Тойота объемом 1600
кубиков) с низких 115 л.с. до 240 л.с. , постепенно с приростом в 10л.с. на
каждом этапе , а может быть и с большим приростом!


Начнем с того , что существует четыре типа двигателей 4A-GE-
- "Большой канал "(с большим проходным отверстием клапана) с TVIS
-"Маленький канал" без TVIS
-20-ти клапанная версия
-версия с мех. нагнетателем (суперчаржером)

Сказать , что писать страницу как эта, сложно , это ничего не сказать!
Численость отклонений в мощности у всех 4А-ЖЕ в мире , это численность
различных способов установки одной и той же детали людьми , на их машинах
и.т.д. Сделать точный расчет , сколько л.с. вы можете получить если сделайте
то , или иное , это наиболее сложная задача . Но ни как не меньше , Я даю
эту информацию , основываясь на собственном опыте , на работе с
многочисленными электронными письмами , телефонными разговорами , а так же
на общение со многими водителями и инженерами со всего мира.
Я также использую данные полученные с моей аппаратуры , так же были
подтверждены мои предположения об изменениях мощьности вверх и вниз , во
время замены распредвалов и.т.д.

4А-ЖЕ -
115 л.с. - 134 л.с.
Это разница лошадинных сил у стандартных 4А-ЖЕ в мире . Thе Air Flow Meter
(считалка поступаемого воздуха , в дальнейшем AFM) на версии TVIS выдает
115 л.с. , обычные для США и других стран. Датчик давления воздуха во
впускном колекторе (The manifold Air Pressure Sensor = MAP) с версией TVIS ,
который еще более распространен , выдет 127 л.с. Такие чаще всего
встречаются в Японии, Австралии и Новой Зеландии. Оба типа этих комплектаций
ставят на АЕ-82 , АЕ-86 и других Короллах , и имеют большой размер впускных
окон. 4А-ЖЕ Короллы АЕ-92не имеет TVIS, А следовательно маленькие впускные
окна , и выдает 134 л.с. с МАР датчиком. Вот некоторая информация :
-Компъютеры "маленьких проходных окон" и "больших проходных окон" редко
взаимозаменяемы , но редко могут повысить или понизить выходную мощьность
двигателя.
- компьютеры AFM типа и MAP типа не взаимозаменяемы, если только не
заменить всю необходимую проводку.
-Все двигателя оснащенные датчиком МАР иметют примерно одинаковую мощьность
и крутящий момент , поэтому это не воспрепятствует замене двигателя (скажем
на версию с маленькими проходными окнами) и попробовать достигнуть большей
мощьности.Но есть более эфективные пути вложения ваших денег.


150 л.с - 160 л.с.
Cинхронизация стандартного распред.вала продолжается 240 градусов , с места
на место , и это типично для современного пути двух вального двигателя. Пара
распредвалов на 256 градусов и вышеупомянутые доделки дадут ва от 140 л.с.
-150 л.с. , этот параграф даст вам приблизительно 150 л.с. , если все
правильно , но если вам нужно больше , то конечно понадобятся распредвалы с
отметкой 264 градуса. Это максимальный размер распред.валов , которые вы
можете использовать с заводским компьютером , так как для правильной работы
прийдется нералезировать значения вакума во вп. колекторе. Версия с датчиком
AFM может немножко богаче , но у меня нет информации по этому поводу.
Вы не сможете получить 160 л.с. со стандартным компьютером , и вам так же
прийдется потратить несколько долларов на дополнительные системы.Я бы
посоветовал взять програмируемую систему , чем <чипы> или еще какие-либо
добавки к стандартному комп-ру., потомучто если вы захотите дополнительных
лошадок позже то вы не будете ограничены в ваших возможнастях , в отличии от
< чипов> и добавок , которые уже запрогромированы.
Когда у вас есть дополнительный (или другой ) компьютер , то вы можете
использоваль любые распред.валы , с небольшой погрешностью , так , чтобы
обеспечить мощность более чем 160 л.с. , Вам следует использовать валы с 272
градусами.
Заметка : при использовании валов с меркой более чем в 260 градусов , Вам
будет полезно удалить TVIS , если таковой имеется . Когда TVIS используются
с меньшими шестернями чем эти, это обеспечит отсечку тяги(4400 об/мин.) на
более низких оборотах , этот эффект исчезает с использованием больших
шестерней!

150 л.с. -160 л.с. это такая отметка , в которой будет необходима некотарая
работа с <головкой>. К счастью , не так уж много надо закончить и если у
Вас <головка> снята , то можно дельно потратить немного больше времени и
сделать дороботки , которые позволят вытянуть из вашего двигателя до 180-190
л.с.
Существуюет 4 области у головок 4A-GE , которым необходимо уделить внимание
- область над седлами клапанов , камера сгорания , и сами проходные окна
клапанов и сами клапана & седла .
- Область над седлами чуть слишком параллельна , и нуждается в маленьком
заужении что бы немного создать эффект Вентури.
- Камера сгорания имеет многочисленные острые края , которые необходимо
сгладить , чтобы исключить раннее воспламенения топлива и.т.д.
- Впускные и выпускные окна (отверстия) вполне нормальные в стандарте , но
они не много большие в головке с <большими проходными окнами> и немного
маленькие в головке с <маленькими проходными окнами > . В головке <с
маленькими проходными окнами> легко сделать их немного побольше , но сделать
большие проходные окна меньше намного сложнее , так что лучше не пробуйте -
Только очистити все ненужные маленькие неровности и взамен сделать новую
наплавку до края головки .
- Клапана и седла дают прекрасные результаты после хорошей третей или даже
пятой резке углов . Некоторые мастерские оставляют окна близкими к зеркалу и
промежутки между окнами становятся острые пости как бритва - Это
неправильно!!!

160 л.с. - 170 л.с.
Теперь начнем снимать серьезную мощь !!! Вы можете забыть о здаче каких-
либо нормах на выброс газов , которые могут быть в вашей стране J .
Вам понадобятся распред валы как минимум на 288 градуса , и вам можно уже
начать задумываться над изменении нижней мертвой точки (НМТ в дальнейшем).
Также начинанается приближениее к пределу впускного колектора , и это уже
отметка , от которой вещи становятся дорогими .
Вся работа с головкой ,описываемая в передъидущем пораграфе , будет входить
в сумму мощьности для этого парграффа , так , чтобы усовершенствовать 150
л.с -160 л.с. вам надо будет повысить компресию в двигателе (цилиндрах
двигателя). Существует два варианта _ шлифовка головки блока или покупка
новых поршней. Стандартные поршня вполне нормальные для 160 -ти л.с. ,без
сомнений, но после этого я рекоммендую использовать хорошие нестандартные
комплекты , такие как Wisco. Вам нужна будет компрессия 10.5:1 , а с
использованием бензина с октановым числом 96 возможно поднятие компрессии
до 11:1 особо не беспокоясь о детонации!
Использовать стандартные пальцы (поршневой палец) можно до 170 л.с. , но
после вам следует поменять их на лучшее , что вы сможете достать , например
ARP или маленький блок Chevy . (Я иммею ввиду , если вы собираетесь поменять
их это будет тоже полезная работа .
Вы также должны быть готовы раскрусивать двигатель до 8000 об/мин. А может и
8500 об/мин.

Впускной колектор небольшая проблема , но если вы достаточно хитры , то
можно сделать двойной (разделенный колектор) по дроселю на каждый в стиле
Вебера , что будет гораздо дешевле (к примеру вся работа с материалами
обойдется 150 австралийских долларов , но если проделать ту же работу с
покупкой фирменых запчастей это легко выльется в 1200 ав . долларов!) А я
сделал вот что : кувил литую пластину толщиной примерно 8 мм. и
толстостенную трубу диаметром 52 мм. . Затем я вырезал фланец для базы
Вебера и под цилиндры на головке . Потом я отрезал четыри трубы равной длины
и частично смял их так , чтобы онибыли похожи на впускные окна . И еще
потратил дня два на шлифовку и подточку , чтобы все детали подходили , а уже
потом сварил это все. Потратил два часа на сглаживания швов от сварки .
Затем я запустил специальный станок чтобы проверить пропускную способность
прямого угла между головкой и дроселями.
За дроселя вы отдадите 400 + ав. долларов каждый. Я просто купил пару Б/у
<мертвого> Dellorto 45 мм. Я заменил только внутрености , а именно только
дросельные заслонки , поэтому получилось дешего!
Может проще и легче использовать что-нибудь типа пары 45 -ти мм. Веберов . Я
очень рекомендую использовать электронный впрыск топлива (инжектор) , чем
карбюратор, потому что инжектор можно более аккуратно и точно настроить .

Быстрая заметка : на моем 4А-ЖЕ (АЕ86 Спринтер) стоят распред валы на 288
град. , не стандартный компьютер , комресия 10.5;1 и немного дороботаная
головка . Он выдает 165 л.с. , с заводской НМТ . Он раскручивается до 8500
об/мин без проблем . (пока что )

170 л.с. - 180л.с.
Все еще нет огромной разницы между большими и малыми проходными окнами . Не
так много работы нужно сделать , чтобы получить дополнительные 10 л.с. с
имеющегося двигателя ; только поставить распред валы побольше . Я
порекомендую от 288 град. до 304 град.

180 л.с - 190 л.с.
Однозначно распред валы на 304 град. и вам нужно начать обращать внимание на
тюнинг впускного колектора (равнодлинный колектор ) , если вы еще не сделали
это . Также подходит к пределу возможности головки с малыми проходными
окнами .

190 л.с. - 200 л.с.
Уперлись в предельно допустимый размер распред валов - 304 град. И вам
понадобится компресия 11:1 ; 200 л.с. примерный придел для головки с малыми
проходными окнами , независемо размер окон , так для больших окон все
только начинается! Еще одна область , которая практически достигла предела -
это клапана . После 200 л.с. вам понадобится набор больших клапанов .
Подробней об этом в следуещем параграфе .
Стандартный выпускной колектор так же достиг предела , так , что 200 л.с.
это максимум что вы можете достигнуть сохронив наибольшее колличество
заводских частей . Чтобы получить 200 л.с. нужно будет раскручивать
двигатель до 9000 об/мин. . если вы сделали все как следует , то двигатель
будет способен ездить по дорогам.

200 л.с. - 220л.с
После 200 л.с. 4А-Же становится все более серьезным двигателем , и поэтому
требует обращать все больше внимания на детали. С этой отметки мы начинаем
тратить все больше денег за меньшие результаты . Но , если вы все-таки
хотите дополнительных лошадок вам прийдется тратить доллары:

Причина , по которой я <скакнул> с 200л.с. до 220 л.с. , это то что я знаю
не так много людей , которые сделали что-нибудь подобное из 4А-ЖЕ , поэтому
у меня не так много информации о них . Я нахожу , что после отметки в 180
л.с. , это настоящие рэйсеры , которые делают все возможное что бы достичь
больше чем 200л.с. , хотя это и небольшой скачек. Причина , по которой я
пропустил значения 170 л.с.-180 л.с. -190 л.с. - 200 л.с., это одна и таже
работа завершенная с головкой , дальше мы меняем валы , которые и делают
отличия между этими отметками. Вы делаете немного здесь , там с компрессией
и.т.д. И вправду не так уж много работы нужно сделать чтобы скакнуть со 170
л.с. до 200 л.с.
Итак нам нужны валы с разметкой в 310 град. и поднятием 0,360" / 9.1 мм .
Вы так же должны начать думать где можно достать подкладки под <стаканы> ,
у которых есть регулировочные шайбы не менее 13 мм. , это будет
предпочтительней , чем 25-ти мм. шайбы , которые сидят на самом стакане.
Т.к. распредвалы больше чем в 300 град. и подъемом клапана 8 мм (примерно)
, края шайб , которые устанавливаются над стаканом редко будут соприкасаться
с выступом распредвала , при этом <кулачек > отбросит в сторону , что
моментально приведет к разрушению стакана и что более правдиво - кусок самой
головки за считаные миллисекунды!!! Наборы <подстаканных> шайб (прокладок)
можно купить , как от ТРД , так и в других спортивных магазинах , но это
будет стоить огромных денег!
Клапана с большим седлом , так же дороги , но опять я знаю путь как снизить
цену . Я узнал что клапана от 7М-ЖТЕ (Тойота Супра) похожи на набор больших
клапанов для 4А-ЖЕ от ТРД . Они на 2 мм больше , чем клапана от 4А-Же , и не
должны подходить , если двигатель выдает меньше 200 л.с. , потому что вы
ПОТЕРЯЕТЕ необходимую мощьность! Другая проблема с этими клапанами , то что
они на 2 мм. короче чем 4А-ЖЕ , так что понадобятся более толстые шайбы .С
шайбами , которые распологаются над стаканами Э это будет выглядеть уродливо
, но мне кажется это возможно с подстаканными шайбами .
Существует два типа коленвалов для 4А-ЖЕ , <маленький> , у которого кривошип
по паспорту 40 мм , и <большой > с большим кривошипом в 42 мм. Но <большой>
коленвал весит на 700 грамм больше , чем <маленький> (~11 кг. против ~
11,7кг.). и где-то до 200 л.с. - 220 л.с. прочнее, но на практике все-таки
есть небольшие отличия между двумя кривошипами. Эти изменения для большей
мощности , чем эта::.
Стандартный выхлопной колектор , как уже было сказано приемлем до 200 л.с. ,
сейчас нам нужно будет поменять его на улучшенный. Я имею в виду , что они
должны подходить по нескольким критериям , которые ставят их на ступень выше
среднего -
- Должно быть 4 трубы одинаковой длины , в пределах меньших ,чем 1/4 " /
6мм
- Четыри трубы НЕ должны быть мятыми (результат згибания энных)
- Четыре трубы должны подходить ,согласно очередности зажигания , т.е.
1-3-4-2. Многие просто подводят трубы к колектору в любом (который им
прейдет на ум) порядке , но это меньше <лошадок > , нежели при установки
хорошего выхлопа.
- Колектор должен быть диаметром примерно 60 мм. Многие нестандартные
колектора оснащаются трубами диаметром 50 мм. , и это не достаточно для
хорошего результата.

220л.с. - 240л.с.
Можно сохранить много времени и денег , купив б/у двигатель <Formula
Atlantic>! А если серьезно , то это зона для <больших мальчиков> , и опять
ставки повышаются.
Предпочтительней ипользовать <маленький> коленвал до 220 л.с. , нежели
<большой> , т.к. большие вкладыши создают большее трение , в тоже время
большой диаметр (42 мм. против 40 мм.) имеет лучшую радиальную скорость на
одинаковых оборотах. Иногда приходится раскручивать движок аж за 10 000
об/мин. , так что это тонкий баланс между прочностью , трением и инерцией .
Конечно , что бы получить наибольшую конечную мощность Вам необходимо
использовать кованый коленвал , и следавательно это редкость и
соответствующая цена.
Я был бы счастлив использовать стандартные шатуны (с вышеупомянутыми болтами
от <ARP>) до 220 л.с. , но после этого лучше бы установить вроде Carillo's,
Cunningham, или шатуны от Crower . Они должны быть сделаны так , чтобы их
вес был на 10% меньше стандартных для снижения возвратно поступательной
массы.
Поршни от <Wisco> тоже прошли свой предел , и так лучше взять высоко -
качественные (и конечно дорогостоящие ) поршни например : Mahle
Используя стандартный масляный насос мы рискуем переливания смазки в пяти
областях , и решение этой проблемы может быть , или покупка дорогого
агрегата от ТРД , или же просто подогнать насос 1GG . Они стоят достаточно
дешего на <разборках> , и впринципе идентичны насосу от ТРД . FWIW ,
стандартные насосы имеют тенденцию (склонность) раскалывать ведущую шестерню
поперек самой широкой части корпуса , при больших оборотах , и тем самым
крошить насос на ходу !
Нам необходимы шестерни в 320 град., с подъемом кулочка 0,400" /10,1 мм. Они
помогут нам преобрести немного больше тяги ниже 6000 об/мин.
<Сухой> поддон так же очень хорошая идея , если он сделан правильно , то
двигатель сможет выдовать немного больше л.с. , чем это могло быть с
<мокрым> поддоном .

240 л.с. - 300л.с.
Если бы у меня был мешок денег и много свободного времени , то я смог бы
получить 260 л.с от 4А-ЖЕ . Лучше больше . Я бы сделал ход поршня короче , и
расточил гильзы чтобы поставить поршня как можно больше , постараясь
сохронить объем около 1600 <кубиков> . Далие я бы установил титановые шатуны
, усовершенствовал или купил пневматические пружины клапанов , так чтобы
раскручивать <двигло> до 15 000 об/мин , или больше , если возможно .
Или , просто взял бы штатный 4А-ЖЕ , снизил компресию до 7.5:1 и поставил
турбину:.
Получив даже больше <лошадок> за меньшую стоймость .
Ладно , теперь серьезно , лучший способ получить <сопящий> турбо двигатель
(4А-ЖТЕ) будет , просто купиь 4А-ЖЗЕ , продать <суперчаджер> и колектора ,
потом на полученые деньги подшипниковую турбину и RWD колектора от AE-86 .
Купить гнутые трубы в каком-нибудь магазине выхлопных систем , сделать
выхлопной колектор для турбины , и даже можно попробовать оставить
стандартный компьютер от 4А-ЖЗЕ или , сохранив много времени и избежав
проблем , купить програмируемый усовершенствованый компьютер.
Используя мою компьтерную дино программу , я высчитал ,что с достаточно
малым давлением 16 psi даст вам около 300 л.с. Вам так же понадобится
интеркулер , они вполне рапространены в наши дни . Я так же поставил
распредвалы побольше стандартных - 260 градусов .

300 л.с. - 400 л.с. (может больше ???)
Чтобы получить больше чем 300 л.с. , потребует немного больше работы ,
что-то похожее на дороботки 4А-ЖЕ для 220 л.с. (смотри выше) . Тот же самый
кованый коленвал , не серийные шатуны , поршня пониженой компрессии (где-то
7:1), большие клапана и шайбы под стаканы клапанов . Плюс еще турбина и
колектора . (Я сомневаюсь , что заводские колектора будут достаточно хороши
, так что вышеперечисленный прийдется делать своими руками. Это нестолько
трудно , сколько займет некоторое время)
И опять на дино тест. Итак с давлением в 20 psi двигатель выдает 400 л.с..
Если вы сможете сделать двигатель способный выдержать давление турбины 30
psi вы сможете перепрыгнуть через отметку в 500 л.с. !!!
Сделать больше этого возможно , как я считаю , потому что турбированные
двигателя Формулы 1 , конца 80-х годов , с объемом 1500 <кубиков> выдавали
больше 1000 л.с. . Я не думаю , что это возможно при вышеперечисленных
переделках на базе 4А-ЖЕ , но ::.. J

4А-ЖЕ 20-ти клапанные двигателя

Я никогда не работал с <20-ти клапанниками> , но по большому счету двигатель
есть двигатель . Единственное отличие это , то что этот двигатель имеет три
впускных клапана , поэтому некоторые обычные правила не работают . Тойота
афиширует их как 162 л.с. (165 л.с.) для первой версии и 167 л.с. для второй
(последней) версии . FWIW , у первой версит серебрянная клапанная крышка и
AFM датчик , а на второй черная и датчик MAP .
Тойота возможно лгут , когда говорят , что 20 - ти клапанник выдает столько
<лошадей> - судя по замерам , которые мне приходилось , когда-либо слышать
они выдают 145л.с. - 150 л.с. Так что я думаю , что лучший способ поднять
мощность стандартного 4А-ЖЕ (16 клапанная версия ) со 115 л.с. -134 л.с. до
150 л.с. - это просто воткнуть двигатель с 20 клапанной версией .Исключением
будут лишь задне-приводные автомобили как AE-86 , только нужно будет сделать
отверстие в огнеупорной перегородке (между моторным отсеком и салоном) для
трамблера (прерывателя-распределителя) или :..

Насколько я вижу не тык уж много нужно сделать , кроме шлифовки впускных
окон и много-угольной работы с посадочными местами клапанов (<седлами>)
.Дальше только менять распредвалы на большие и шестерни , чтобы получить
большую отдачу , и опять же все это до 200 л.с. , дальше прейдется менять
внутрености на более прочные и легкие узлы . Получается таже самая
комбинация по увеличению мощности , но главно при увеличении оборотов
двигателя нужно <запихать > достаточно воздуха , чтобы получить хорошую
отдачу . FWIW нижняя поверхность 20-ти клапанника очень похожа на 16 - ти
клапанник (с маленькими впускными окнами) , но поршня разные , поэтому не
могут быть собраны во едино.(Когда люди спрашивают меня могут ли они просто
поставить головку от 20-ти клапанной версии , я отвечаю не определенно -
может быть , Да , т.к. полты и каналы подходят и Нет , потому что
<проточки> на поршнях разные . )
Максимум , что я встречал из 4А-ЖЕ 20-ти кл. это 215 л.с. , или близко к
хорошему 16- ти кл. без 30 л.с.


4А-ЖЗЕ
145 л.с. -165 л.с.
Самый ранний 4А-ЖЗЕ оснащен 145 л.с. , и существует 3 варианта (на мой
взгляд) получить побольше <лошадок> в <табун> - просто установить более
позднюю версию , у которой уже 165 л.с. , или поставить большую шестерню
коленвала (ето позволит вращать нагнетатель быстрей , на меньших оборотах ,
и следовательно получать большее кол-во воздуха) что-нибудь от HKS или
Cusco. И третий вариант - тоже самое , что бы вы делали с обычным
двигателем , а именно большие распредвалы , вп-ные окна и.т.д. При
комплектации с нагнетателем мы ограничены в оборотах двигателя , например
нагнетатель <нелюбит> , когда его крутят больше 10 000 об/мин. Причиной тому
явяются лопатки ротора (крыльчатки) , которые при высоких оборотах начинают
плавить сальники .
Так , что мы ограничены оборотами около 8 000 об/мин (нагнетатель
проварачивается 1,25 раза за один поворот коленчатого вала , и с шестернями
от HKS даже больше ) . Это означает , что все наши усилия будут направлены
на то , чтобы заставить нагнетатель пихать как можно больше воздуха на
стандартных оборотах .
Следовательнно , чтобы получить пополнение в <табуне> в кол-ве 20 л.с. нужно
будет провести работы с впускным колектором и <головкой > может быть
распредвалы побольше (256 град ) , что легко даст вам 20 л.с. , которые вам
необходимы. Бльший интеркулер , улучшение пропускной способности воздуха (в
стандарте она намного хуже ) впуск и выпуск , так же очень помогут .

165 л.с - 185 л.с.

Опять же , наиболее легкий путь перейти со 165 л.с. до 185 л.с. - это просто
поставит распредвалы побольше , и может быть небольшие работы по шлифовки
(зачистки ) сужений во впускном и выпускном колекторах . По окончанию этой
шкалы мощности , я считаю , что впускной колектор слишом заужен , т.к.
нагнетатель дует в одно <дуло> , которое затем разделяет его на четыри
канала , по каналу на каждый цилиндр . Проблема в том , что три из этих
канала входят в головку под углом далеком от прямой и поэтому острый угол
будет создавать нежелательную турбулентность (FWIW, канал для первого
цилиндра подходит под смешным углом ! ) Если Вы потратите немного времени и
приложите достаточно усилий , чтобы сделать качественный калектор (или
возможно просто поставить колектор типа как от заднеприводной AE-86 ) ,
который легко даст вам дополнительный 20 л.с.

Большие распредвалы на 264 град. сделают свой большой вклад , но как и с
4А-ЖЕ после такого кол-ва лошадей стандартный компьютер будет иметь проблемы
с замерами вакума во впускном колекторе . Конечно , Вы можете поставить
тюнинговый компьютер , который больше использует положение дроссельной
заслонки , нежели чем датчик МАР , но взяв вышеуказанный вы выиграете всего
лишь <день> . Я максимально настаиваю на использование вспомогательных
(регулируемые ) компьютеров , которые как минимум содержит следующие опции -
использование смешанных сигналов дросельной заслонки и датчика МАР ,
возможность корекции при возросшей мощности , так же изменения сигнала от
датчика кислорода .

185 л.с. +

Лучший 4А-ЖЗЕ , о котором мне приходилось когда-либо слышать насчитывал
что-то около 200 л.с. , я считаю , что без вопрсов на нем были сделаны
вышеперечисленные модификации . Я думаю , что лучшим способом получить
больше мощи на выходе - это установить нагнтатель от 1ЖЖЗЕ , который при
тех же оборотах накачивает на 17 процентов больше воздуха нежели стандартный
, это также означает , что он должен вращаться медленнее чтобы получить
одинаковое кол-во (как на стандартном) воздуха при одних оборотах . Это
значит , что двигатель будет страдать потерей мощности (провалом) , нежели
это было бы с меньшим нагнетателем . Провал о котором я говорю , это
мощность , которой не хватает , когда стрелка тахометра заходит за красную
линию . Затем мощность резко возрастает , в соответствии с оборотами
двигателя , и чем больше вы сделаете , чтобы уменьшить этот провал , тем
лучше результат вы получити .
Трюк в том , чтобы установить для себя обороты , при которых Вы хотите
максимальную отдачу от двигателя , ну скажем 7 000 об/мин. , и попытаться
заставить двигатель вырабатывать максимальное кол-во воздуха вокруг этих
оборотах . И опять , все вышеупамянутые трюки и есть путь к <совершенству> .
 
 Re: Вопрос!!!
Автор: 61 (---.ats40-pool.donpac.ru)
Дата:   давно

Огромный Фанкс !Nebulus!. как я понял особой разницы между Silver top и Black top нету!
Страницы:  1  2 


Подано голосов: 14


Карта форума - GT форум


Архив GT форума
Toyota - Nissan - Mitsubishi - Honda - Mazda - Subaru - Suzuki - Isuzu - Daihatsu
1990 - 1991 - 1992 - 1993 - 1994 - 1995 - 1996 - 1997 - 1998 - 1999 - 2000 - 2001 - 2002 - 2003 - 2004 - 2005 - 2006 - 2007 - 2008 - 2009 - 2010 - 2011 - 2012 - 2013 - 2014 - 2015 - 2016 - 2017 - 2018 - 2019 - 2020 - 2021 - 2022 - 2023 - 2024